

Numerical solutions for first-order ordinary differential equations

Outline

The Cauchy Problem

• First order ordinary differential equation:

$$\mathbf{x}' = f(t, \mathbf{x}, \mathbf{x}) \tag{1}$$

where $x' = \frac{dx}{dt}$. The general solution: $x = x(t, C), \ C \in \mathbb{R}$

• The Cauchy problem:

$$\begin{cases} x' = f(t, x) \\ x(t_1) = x_1 \end{cases}$$
(2)

The particular solution: x = x(t)

Numerical solution for a Cauchy problem

• A numerical (approximate) solution of a Cauchy problem - a sequence of points following the plot of the exact (analytical) solution.

- The division: $\Delta : a = t_1 < t_2 < \cdots < t_{n+1} = b$. The numerical solution: the sequence of values x_1, x_2, \dots, x_{n+1} , where $x(t_i) \simeq x_i$.
- x_1 is given by the initial condition and $x_2, ..., x_{n+1}$ may be computed by using an iterative formula of the type $x_{i+1} = F(t_i, x_i)$.

Euler's method - the formula

- $\Delta : a = t_1 < t_2 < \cdots < t_{n+1} = b$ equidistant division: $t_{i+1} t_i = h$, where $h = \frac{b-a}{n}$ is the step of the division.
- We expand *x*(*t*_{*i*+1}) in Taylor series and keep only the first two terms of the expansion (first degree Taylor polynomial):

$$x(t_{i+1}) = x(t_i + h) \simeq x(t_i) + \frac{x'(t_i) \cdot h^1}{1!} = x(t_i) + f(t_i, x_i) \cdot h$$

• We denote by x_k the approximate value of the solution in t_k (i.e. $x_k \simeq x(t_k)$). We obtain the recurrence relation:

$$x_{i+1} = x_i + h \cdot f(t_i, x_i), \quad i = 1, 2, \cdots, n$$
 (3)

Euler's method - geometrical interpretation

Euler's method - algorithm

Input data: Starting point (t_1, x_1) (given by the initial condition), integrating interval [a, b] (where $a = t_1$), the number of subintervals *n*.

Output data: Approximate values x_i , $i = 2, 3, \dots, n+1$ of the unknown function x in the corresponding nodes t_i of the division.

Start

$$h = (b - a)/n;$$

For i from 1 to n
 $t_{i+1} = t_i + h$
 $x_{i+1} = x_i + h \cdot f(t_i, x_i)$
Stop

Consider the Cauchy problem $\begin{cases} x' = -2 \cdot t \cdot x^2 \\ x(0) = 1 \end{cases}$. Find the analytical solution, com-

pute a numerical solution on the [0, 1] interval using Euler's method and compare the two solutions.

• We separate the variables:
$$\frac{dx}{dt} = -2 \cdot t \cdot x^2 \Rightarrow \frac{1}{x^2} \cdot dx = -2 \cdot t \cdot dt$$

 $\Rightarrow \int \frac{1}{x^2} \cdot dx = \int -2 \cdot t \cdot dt \Rightarrow -\frac{1}{x} = -t^2 - C \Rightarrow \frac{1}{x} = t^2 + C \Rightarrow x = \frac{1}{t^2 + C}$

Consider the Cauchy problem $\begin{cases} x' = -2 \cdot t \cdot x^2 \\ x(0) = 1 \end{cases}$. Find the analytical solution, com-

pute a numerical solution on the [0, 1] interval using Euler's method and compare the two solutions.

- We separate the variables: $\frac{dx}{dt} = -2 \cdot t \cdot x^2 \Rightarrow \frac{1}{x^2} \cdot dx = -2 \cdot t \cdot dt$ $\Rightarrow \int \frac{1}{x^2} \cdot dx = \int -2 \cdot t \cdot dt \Rightarrow -\frac{1}{x} = -t^2 - C \Rightarrow \frac{1}{x} = t^2 + C \Rightarrow x = \frac{1}{t^2 - C}$
- The general solution of the differential equation is $x(t) = \frac{1}{t^2 + C}, C \in \mathbb{R}$. ۰
- We find *C* by using the initial condition: $x(0) = 1 \Rightarrow \frac{1}{n^2 + C} = 1 \Rightarrow \frac{1}{C} = 1 \Rightarrow C = 1$.

Consider the Cauchy problem $\begin{cases} x' = -2 \cdot t \cdot x^2 \\ x(0) = 1 \end{cases}$. Find the analytical solution, com-

pute a numerical solution on the [0, 1] interval using Euler's method and compare the two solutions.

- We separate the variables: $\frac{dx}{dt} = -2 \cdot t \cdot x^2 \Rightarrow \frac{1}{x^2} \cdot dx = -2 \cdot t \cdot dt$ $\Rightarrow \int \frac{1}{x^2} \cdot dx = \int -2 \cdot t \cdot dt \Rightarrow -\frac{1}{x} = -t^2 - C \Rightarrow \frac{1}{x} = t^2 + C \Rightarrow x = \frac{1}{t^2 - C}$
- The general solution of the differential equation is $x(t) = \frac{1}{t^2 \perp C}, C \in \mathbb{R}$.
- We find *C* by using the initial condition: $x(0) = 1 \Rightarrow \frac{1}{0^2+C} = 1 \Rightarrow \frac{1}{C} = 1 \Rightarrow C = 1$.

Consider the Cauchy problem $\begin{cases} x' = -2 \cdot t \cdot x^2 \\ x(0) = 1 \end{cases}$. Find the analytical solution, com-

pute a numerical solution on the [0, 1] interval using Euler's method and compare the two solutions.

- We separate the variables: $\frac{dx}{dt} = -2 \cdot t \cdot x^2 \Rightarrow \frac{1}{x^2} \cdot dx = -2 \cdot t \cdot dt$ $\Rightarrow \int \frac{1}{x^2} \cdot dx = \int -2 \cdot t \cdot dt \Rightarrow -\frac{1}{x} = -t^2 - C \Rightarrow \frac{1}{x} = t^2 + C \Rightarrow x = \frac{1}{t^2 - C}$
- The general solution of the differential equation is $x(t) = \frac{1}{t^2 \perp C}, C \in \mathbb{R}$.
- We find *C* by using the initial condition: $x(0) = 1 \Rightarrow \frac{1}{0^2+C} = 1 \Rightarrow \frac{1}{C} = 1 \Rightarrow C = 1$.
- The particular solution of the Cauchy problem is $x(t) = \frac{1}{t^2+1}$.

Consider the Cauchy problem $\begin{cases} x' = -2 \cdot t \cdot x^2 \\ x(0) = 1 \end{cases}$. Find the analytical solution, compute a numerical solution on the [0, 1] interval using Euler's method and compare the

pute a numerical solution on the [0, 1] interval using Euler's method and compare the two solutions.

Numerical (approximate) solution:

• We choose the equidistant division (with the step h = 0.1):

$$\Delta : t_1 = 0 < t_2 = 0.1 < t_3 = 0.2 < \dots < t_{11} = 1$$

We have $f(t, x) = -2 \cdot t \cdot x^2$ and thus Euler's formula $x_{i+1} = x_i + h \cdot f(t_i, x_i)$ becomes:

$$x_{i+1} = x_i - 0.2 \cdot t_i \cdot x_i^2, \quad i = 1, 2, \cdots, 10$$

• From the initial condition $(x(t_1) = x_1)$ it follows that $x_1 = 1$ and thus for i = 1 we compute $x_2 = x_1 - 0.2 \cdot t_1 \cdot x_1^2 = 1 - 0.2 \cdot 0 \cdot 1^2 = 1 - 0 = 1$.

• For i = 2 we compute $x_3 = x_2 - 0.2 \cdot t_2 \cdot x_2^2 = 1 - 0.2 \cdot 0.1 \cdot 1^2 = 1 - 0.02 = 0.98$.

• For i = 3 we compute $x_4 = x_3 - 0.2 \cdot t_3 \cdot x_3^2 = 0.98 - 0.2 \cdot 0.2 \cdot 0.98^2 = 1 - 0.02 = 0.98 - 0.04 \cdot 0.9604 = 0.98 - 0.038416 = 0.9416$ and the computations may continue in the same manner ($i = 4, 5, \dots, 10$).

Consider the Cauchy problem $\begin{cases} x' = -2 \cdot t \cdot x^2 \\ x(0) = 1 \end{cases}$. Find the analytical solution, compute a numerical solution on the [0, 1] interval using Euler's method and compare the

pute a numerical solution on the [0, 1] interval using Euler's method and compare the two solutions.

Numerical (approximate) solution:

• We choose the equidistant division (with the step h = 0.1):

$$\Delta : t_1 = 0 < t_2 = 0.1 < t_3 = 0.2 < \dots < t_{11} = 1$$

We have $f(t, x) = -2 \cdot t \cdot x^2$ and thus Euler's formula $x_{i+1} = x_i + h \cdot f(t_i, x_i)$ becomes:

$$x_{i+1} = x_i - 0.2 \cdot t_i \cdot x_i^2, \quad i = 1, 2, \cdots, 10$$

• From the initial condition $(x(t_1) = x_1)$ it follows that $x_1 = 1$ and thus for i = 1 we compute $x_2 = x_1 - 0.2 \cdot t_1 \cdot x_1^2 = 1 - 0.2 \cdot 0 \cdot 1^2 = 1 - 0 = 1$.

• For i = 2 we compute $x_3 = x_2 - 0.2 \cdot t_2 \cdot x_2^2 = 1 - 0.2 \cdot 0.1 \cdot 1^2 = 1 - 0.02 = 0.98$.

• For i = 3 we compute $x_4 = x_3 - 0.2 \cdot t_3 \cdot x_3^2 = 0.98 - 0.2 \cdot 0.2 \cdot 0.98^2 = 1 - 0.02 = 0.98 - 0.04 \cdot 0.9604 = 0.98 - 0.038416 = 0.9416$ and the computations may continue in the same manner ($i = 4, 5, \dots, 10$).

Consider the Cauchy problem $\begin{cases} x' = -2 \cdot t \cdot x^2 \\ x(0) = 1 \end{cases}$. Find the analytical solution, compute a numerical solution on the [0, 1] interval using Euler's method and compare the

pute a numerical solution on the [0, 1] interval using Euler's method and compare the two solutions.

Numerical (approximate) solution:

• We choose the equidistant division (with the step h = 0.1):

$$\Delta : t_1 = 0 < t_2 = 0.1 < t_3 = 0.2 < \dots < t_{11} = 1$$

We have $f(t, x) = -2 \cdot t \cdot x^2$ and thus Euler's formula $x_{i+1} = x_i + h \cdot f(t_i, x_i)$ becomes:

$$x_{i+1} = x_i - 0.2 \cdot t_i \cdot x_i^2, \quad i = 1, 2, \cdots, 10$$

- From the initial condition $(x(t_1) = x_1)$ it follows that $x_1 = 1$ and thus for i = 1 we compute $x_2 = x_1 0.2 \cdot t_1 \cdot x_1^2 = 1 0.2 \cdot 0 \cdot 1^2 = 1 0 = 1$.
- For i = 2 we compute $x_3 = x_2 0.2 \cdot t_2 \cdot x_2^2 = 1 0.2 \cdot 0.1 \cdot 1^2 = 1 0.02 = 0.98$.
- For i = 3 we compute $x_4 = x_3 0.2 \cdot t_3 \cdot x_3^2 = 0.98 0.2 \cdot 0.2 \cdot 0.98^2 = 1 0.02 = 0.98 0.04 \cdot 0.9604 = 0.98 0.038416 = 0.9416$ and the computations may continue in the same manner ($i = 4, 5, \dots, 10$).

Consider the Cauchy problem $\begin{cases} x' = -2 \cdot t \cdot x^2 \\ x(0) = 1 \end{cases}$. Find the analytical solution, compute a numerical solution on the [0, 1] interval using Euler's method and compare the

pute a numerical solution on the [0, 1] interval using Euler's method and compare the two solutions.

Numerical (approximate) solution:

• We choose the equidistant division (with the step h = 0.1):

$$\Delta : t_1 = 0 < t_2 = 0.1 < t_3 = 0.2 < \dots < t_{11} = 1$$

We have $f(t, x) = -2 \cdot t \cdot x^2$ and thus Euler's formula $x_{i+1} = x_i + h \cdot f(t_i, x_i)$ becomes:

$$x_{i+1} = x_i - 0.2 \cdot t_i \cdot x_i^2, \quad i = 1, 2, \cdots, 10$$

- From the initial condition $(x(t_1) = x_1)$ it follows that $x_1 = 1$ and thus for i = 1 we compute $x_2 = x_1 0.2 \cdot t_1 \cdot x_1^2 = 1 0.2 \cdot 0 \cdot 1^2 = 1 0 = 1$.
- For i = 2 we compute $x_3 = x_2 0.2 \cdot t_2 \cdot x_2^2 = 1 0.2 \cdot 0.1 \cdot 1^2 = 1 0.02 = 0.98$.
- For i = 3 we compute $x_4 = x_3 0.2 \cdot t_3 \cdot x_3^2 = 0.98 0.2 \cdot 0.2 \cdot 0.98^2 = 1 0.02 = 0.98 0.04 \cdot 0.9604 = 0.98 0.038416 = 0.9416$ and the computations may continue in the same manner ($i = 4, 5, \dots, 10$).

Example - Comparison between the analytical solution and the numerical one

- The difference (in absolute value) between the exact value x(t_i) and the corresponding approximation x_i is in fact the error associated to the approximation: ε_i = |x(t_i) x_i|.
- Since the exact solution is $x(t) = \frac{1}{t^{2}+1}$, the exact values $x(t_{i})$ corresponding to the previously computed approximations x_{i} are: $x(t_{1}) = \frac{1}{t^{2}+1} = \frac{1}{0^{2}+1} = 1$, $x(t_{2}) = \frac{1}{t^{2}_{2}+1} = \frac{1}{0.1^{2}+1} = \frac{1}{1.01} \simeq 0.99$, $x(t_{3}) = \frac{1}{t^{2}_{3}+1} = \frac{1}{0.2^{2}+1} = \frac{1}{1.04} \simeq 0.961$, $x(t_{4}) = \frac{1}{t^{2}_{4}+1} = \frac{1}{0.3^{2}+1} = \frac{1}{1.09} \simeq 0.917$.
- The results corresponding to the first three steps in Euler's method are:

<i>ti</i>	Exact sol. $x(t_i)$	Numerical sol. x_i	Error $\varepsilon_i = x(t_i) - x_i $
$t_1 = 0$	$x(t_1)=1$	<i>x</i> ₁ = 1	$\varepsilon_1 = 1 - 1 = 0$
<i>t</i> ₂ = 0.1	$x(t_2) \simeq 0.990$	<i>x</i> ₂ = 1	$arepsilon_{2}\simeq 0.99-1 \simeq 0.01$
<i>t</i> ₃ = 0.2	$x(t_3) \simeq 0.961$	<i>x</i> ₃ = 0.98	$arepsilon_3 \simeq 0.961-0.98 \simeq 0.02$
$t_4 = 0.3$	$x(t_4) \simeq 0.917$	$x_4 \simeq 0.941$	$arepsilon_4\simeq 0.917-0.941 \simeq 0.03$

Example - Comparison between the analytical solution and the numerical one

Remarks:

- Due to the nature of any method of Euler's type, which involves a truncation of the Taylor series expansion, the value of the approximation *x_i* presents an inherent error. In the case of Euler's method the errors are rather large and, even though they can be reduced by choosing a smaller step size, Euler's method is not considered as a practical method.
- Euler's method is a *single-step* method, meaning that x_{i+1} is computed as a function of x_i only, in contrast to *multistep* methods which compute x_{i+1} as a function of not only x_i but also x_{i-1} , x_{i-2} ..., thus obtaining a more precise approximation.

Remarks:

- Due to the nature of any method of Euler's type, which involves a truncation of the Taylor series expansion, the value of the approximation *x_i* presents an inherent error. In the case of Euler's method the errors are rather large and, even though they can be reduced by choosing a smaller step size, Euler's method is not considered as a practical method.
- Euler's method is a *single-step* method, meaning that x_{i+1} is computed as a function of x_i only, in contrast to *multistep* methods which compute x_{i+1} as a function of not only x_i but also x_{i-1} , x_{i-2} ..., thus obtaining a more precise approximation.

Remarks:

• Another way to obtain a better approximation is to take into account more terms in the Taylor series expansion of $x(t_{i+1}) = x(t_i + h)$. Thus, keeping the first three terms we obtain (a second degree Taylor polynomial):

$$x(t_i+h)\simeq x(t_i)+\frac{x'(t_i)}{1!}\cdot h+\frac{x''(t_i)}{2!}\cdot h^2$$

Here $x''(t_i) = \frac{d}{dt}(x'(t_i)) = \frac{d}{dt}(f(t_i, x(t_i))) = \frac{\partial f}{\partial t}(t_i, x_i) + \frac{\partial f}{\partial x}(t_i, x_i) \cdot \frac{dx}{dt} =$ = $\frac{\partial f}{\partial t}(t_i, x_i) + \frac{\partial f}{\partial x}(t_i, x_i) \cdot f(t_i, x_i).$

It follows that the Taylor series expansion of $x(t_i + h)$ is:

$$x(t_i+h) \simeq x_i + f(t_i, x_i) \cdot h + \frac{1}{2} \left(\frac{\partial f}{\partial t}(t_i, x_i) + \frac{\partial f}{\partial x}(t_i, x_i) \cdot f(t_i, x_i) \right) h^2.$$
(4)

Runge-Kutta-type methods - introduction

Runge-Kutta methods of order *r* are a family of numerical methods based on the following formula:

$$x_{i+1} = x_i + \sum_{j=1}^r c_j \cdot k_j$$
 (5)

where:

$$k_1 = h \cdot f(t_i, x_i), \quad k_j = h \cdot f(t_i + \alpha_j \cdot h, \ x_i + \sum_{s=1}^{j-1} \beta_{js} \cdot k_s), \ j = 2, ..., r$$

The constants c_j , α_j and β_{js} are determined by imposing the following condition:

• The coefficients of the powers of *h* from the Taylor series expansion of x_{i+1} given by (5) must coincide with the corresponding coefficients from the Taylor series expansion (4) of $x(t_i + h)$.

The methods defined by the formulas (5) are called Runge-Kutta methods of order r.

Runge-Kutta-type methods - The case r=1

For r = 1 the formula (5) becomes:

 $x_{i+1} = x_i + c_1 \cdot k_1, \quad k_1 = h \cdot f(t_i, x_i) \quad \Rightarrow \quad x_{i+1} = x_i + c_1 \cdot h \cdot f(t_i, x_i) \quad (*)$

Basically in this case there is no need for a Taylor series expansion of x_{i+1} (since it already appears as a first degree polynomial in *h*).

On the other hand the corresponding Taylor series expansion of $x(t_i + h)$ is (the first degree Taylor polynomial):

$$x(t_i + h) \simeq x(t_i) + h \cdot x'(t_i) = x_i + h \cdot f(t_i, x_i) \quad (**)$$

Comparing the above expressions of x_{i+1} (*) and $x(t_i + h)$ (**) we remark that in both expressions the coefficient of h^0 (the "free term" with respect to h) is x_i . The coefficient of h^1 in (*) is $c_1 \cdot f(t_i, x_i)$, while in (**) it is $f(t_i, x_i)$. Since the two coefficients must be equal, it follows that $c_1 = 1$ and in fact **the first order Runge-Kutta method** coincides with Euler's method: $x(t_i + h) = x_i + h \cdot f(t_i, x_i)$.

Runge-Kutta-type methods - The case r=2

For r = 2 the formula (5) becomes:

 $x_{i+1} = x_i + c_1 \cdot k_1 + c_2 \cdot k_2$, $k_1 = h \cdot f(t_i, x_i)$, $k_2 = h \cdot f(t_i + \alpha_2 \cdot h, x_i + \beta_{21} \cdot k_1)$. Replacing k_1 and k_2 we obtain:

 $x_{i+1} = x_i + c_1 \cdot h \cdot f(t_i, x_i) + c_2 \cdot h \cdot f(t_i + \alpha_2 \cdot h, x_i + \beta_{21} \cdot h \cdot f(t_i, x_i)).$ (6)

We recall that a function of the type $f(a + h_1, b + h_2)$ may be expanded in Taylor series:

$$f(a+h_1,b+h_2) \simeq f(a,b) + h_1 \cdot \frac{\partial f}{\partial t}(a,b) + h_2 \cdot \frac{\partial f}{\partial x}(a,b)$$

For $a = t_i$, $b = x_i$, $h_1 = \alpha_2 \cdot h$ and $h_2 = \beta_{21} \cdot h \cdot f(t_i, x_i)$ we obtain the expansion:

 $f(t_i + \alpha_2 \cdot h, x_i + \beta_{js} \cdot h \cdot f(t_i, x_i)) \simeq f(t_i, x_i) + \alpha_2 \cdot h \cdot \frac{\partial f}{\partial t}(t_i, x_i) + \beta_{21} \cdot h \cdot f(t_i, x_i) \cdot \frac{\partial f}{\partial x}(t_i, x_i).$ Replacing this expansion in (6) we obtain:

$$x_{i+1} \simeq x_i + c_1 \cdot h \cdot f(t_i, x_i) + c_2 \cdot h \cdot \left(f(t_i, x_i) + \alpha_2 \cdot h \cdot \frac{\partial f}{\partial t}(t_i, x_i) + \beta_{21} \cdot h \cdot f(t_i, x_i) \cdot \frac{\partial f}{\partial x}(t_i, x_i) \right)$$

It follows that the Taylor series expansion of x_{i+1} corresponding to the (5) formula is:

$$x_{i+1} \simeq x_i + (c_1 + c_2) \cdot f(t_i, x_i) \cdot h + \left(c_2 \cdot \alpha_2 \cdot \frac{\partial f}{\partial t}(t_i, x_i) + c_2 \cdot \beta_{21} \cdot f(t_i, x_i) \cdot \frac{\partial f}{\partial x}(t_i, x_i)\right) \cdot h^2$$
(7)

Runge-Kutta-type methods - The case r=2 (continued)

Thus in order to find the constants c_1 , c_2 , α_2 and β_{21} we will compare the coefficients of the powers of *h* from the Taylor series expansion of x_{i+1} (7) corresponding to the Runge-Kutta formula:

$$x_{i+1} \simeq x_i + (c_1 + c_2) \cdot f(t_i, x_i) \cdot h + \left(c_2 \cdot \alpha_2 \cdot \frac{\partial f}{\partial t}(t_i, x_i) + c_2 \cdot \beta_{21} \cdot f(t_i, x_i) \cdot \frac{\partial f}{\partial x}(t_i, x_i)\right) \cdot h^2$$

and the coefficients of the powers of *h* from the Taylor series expansion of $x(t_i + h)$ (4):

$$\mathbf{x}(t_i + h) \simeq \mathbf{x}_i + f(t_i, \mathbf{x}_i) \cdot h + \frac{1}{2} \left(\frac{\partial f}{\partial t}(t_i, \mathbf{x}_i) + \frac{\partial f}{\partial \mathbf{x}}(t_i, \mathbf{x}_i) \cdot f(t_i, \mathbf{x}_i) \right) h^2.$$

- The coefficients of h^0 are the same in both expansions, namely x_i .
- The coefficient of h^1 în (7) is $(c_1 + c_2) \cdot f(t_i, x_i)$ while the same coefficient in (4) is $f(t_i, x_i)$, which means that $c_1 + c_2 = 1$.
- The coefficient of h^2 in (7) contains $c_2 \cdot \alpha_2$ as the coefficient of $\frac{\partial f}{\partial t}(t_i, x_i)$ and $c_2 \cdot \beta_{21}$ as the coefficient of $f(t_i, x_i) \cdot \frac{\partial f}{\partial x}(t_i, x_i)$. In (4) the corresponding coefficients are both equal to $\frac{1}{2}$, which means that $c_2 \cdot \alpha_2 = \frac{1}{2}$ and $c_2 \cdot \beta_{21} = \frac{1}{2}$.

Runge-Kutta-type methods - The case r=2 (continued)

Hence we obtain the system of equations:

$$\begin{cases} \mathbf{C}_1 + \mathbf{C}_2 = \mathbf{1} \\ \mathbf{C}_2 \cdot \alpha_2 = \frac{1}{2} \\ \mathbf{C}_2 \cdot \beta_{21} = \frac{1}{2} \end{cases}$$

Obviously this system of 3 equations in 4 unknowns does not have a unique solution, which means that there is no unique Runge-Kutta method of second order, and this is true for any Runge-Kutta method of order r, r > 1.

One of the well-known variants of the second order Runge-Kutta method corresponds to the values $c_1 = c_2 = \frac{1}{2}$, $\alpha_2 = \beta_{21} = 1$:

$$x_{i+1} = x_i + \frac{h}{2} \left[f(t_i, x_i) + f(t_i + h, x_i + h \cdot f(t_i, x_i)) \right].$$
(8)

Runge-Kutta-type methods - The case r=4

One of the most widely used methods to find numerical solutions of ordinary differential equations is the fourth order Runge-Kutta method. The computation of the coefficients (too long to be included here) is performed in the same way as for the previous cases (Exercise!). A variant of the fourth order Runge-Kutta method is:

$$x_{i+1} = x_i + \frac{k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4}{6}, \quad i = 1, 2, \cdots, n$$
 (9)

unde

$$k_1 = h \cdot f(t_i, x_i), \ k_2 = h \cdot f(t_i + \frac{h}{2}, \ x_i + \frac{k_1}{2}), \ k_3 = h \cdot f(t_i + \frac{h}{2}, \ x_i + \frac{k_2}{2}), \ k_4 = h \cdot f(t_i + h, \ x_i + k_3).$$

Algorithm for the fourth order Runge-Kutta method:

Input data: The starting point (t_1, x_1) (given by the initial condition), the interval of integration [a, b] (where $a = t_1$), the number of subdivisions n.

Output data: The approximate values x_i , $i = 2, 3, \dots, n+1$ of the unknown function x in the corresponding nodes t_i of the division.

Start

$$h = (b - a)/n;$$

Pentru i de la 1 la n
 $t_{i+1} = t_i + h$
 $k_1 = h \cdot f(t_i, x_i)$
 $k_2 = h \cdot f(t_i + \frac{h}{2}, x_i + \frac{k_2}{2})$
 $k_3 = h \cdot f(t_i + h, x_i + k_3)$
 $x_{i+1} = x_i + \frac{k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4}{6}$
Stop

Exercise

We consider the Cauchy problem $\begin{cases} y'=2\cdot x\cdot y\\ y(0)=-1 \end{cases}$. Find the analytical (exact) solution

tion of the problem, compute a numerical solution using Euler's method (the first three steps only) and compare the two solutions.

References

Matematici asistate de calculator. Matlab, Mathcad, Mathematica, Maple, Derive Pavel Naslau, Romeo Negrea, Liviu Cadariu, Bogdan Caruntu, Dan Popescu, Monica Balmez, Constantin Dumitrascu, Editura Politehnica, Timisoara, 2007.

Advanced Calculus in Engineering, *Romeo Negrea, Bogdan Caruntu, Ciprian Hedrea*, Editura Politehnica, Timisoara, 2009.

Class evaluation form - CV

With the aim of improving the course, please take a few moments to fill this (short and anonymous) survey.

Thank you for your attention!